Những câu hỏi liên quan
Nguyễn Phương Oanh
Xem chi tiết
tthnew
10 tháng 7 2019 lúc 10:17

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

Bình luận (0)
Nguyen Duy Dai
Xem chi tiết
Nguyễn Thị Nga
Xem chi tiết
Min
Xem chi tiết
Thắng Nguyễn
27 tháng 4 2017 lúc 19:52

Theo AM-GM ta có: \(VT=\frac{a}{b}+\sqrt{\frac{b}{c}}+\sqrt[3]{\frac{c}{a}}\)

\(=\frac{a}{b}+\frac{1}{2}\sqrt{\frac{b}{c}}+\frac{1}{2}\sqrt{\frac{b}{c}}+\frac{1}{3}\sqrt[3]{\frac{c}{a}}+\frac{1}{3}\sqrt[3]{\frac{c}{a}}+\frac{1}{3}\sqrt[3]{\frac{c}{a}}\)

\(\ge6\sqrt[6]{\frac{a}{b}\cdot\frac{1}{2}\sqrt{\frac{b}{c}}\cdot\frac{1}{2}\sqrt{\frac{b}{c}}\cdot\frac{1}{3}\sqrt[3]{\frac{c}{a}}\cdot\frac{1}{3}\sqrt[3]{\frac{c}{a}}\cdot\frac{1}{3}\sqrt[3]{\frac{c}{a}}}\)

\(=6\sqrt[6]{\frac{a}{b}\cdot\frac{1}{4}\cdot\frac{1}{27}\cdot\sqrt{\frac{b^2}{c^2}}\cdot\sqrt[3]{\frac{c^3}{a^3}}}\)

\(=6\sqrt[6]{\frac{a}{b}\cdot\frac{1}{108}\cdot\frac{b}{c}\cdot\frac{c}{a}}=6\sqrt[6]{\frac{1}{108}}=\frac{6}{\sqrt[6]{108}}>\frac{5}{2}\)

Bình luận (0)
Huy Lê
Xem chi tiết
Kiệt Nguyễn
22 tháng 8 2020 lúc 20:03

Trước hết ta chứng minh bất đẳng thức sau \(\sqrt{a^2+x^2}+\sqrt{b^2+y^2}\ge\sqrt{\left(a+b\right)^2+\left(x+y\right)^2}\)

Thật vậy, bất đẳng thức trên tương đương với \(\left(\sqrt{a^2+b^2}+\sqrt{x^2+y^2}\right)^2\ge\left(a+x\right)^2+\left(b+y\right)^2\)\(\Leftrightarrow2\sqrt{\left(a^2+b^2\right)\left(x^2+y^2\right)}\ge2ax+2by\Leftrightarrow\left(a^2+b^2\right)\left(x^2+y^2\right)\ge\left(ax+by\right)^2\)

Bất đẳng thức cuối cùng là bất đẳng thức Bunyakovsky nên (*) đúng

Áp dụng bất đẳng thức trên ta có \(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\ge\sqrt{\left(a+b\right)^2+\left(\frac{1}{b}+\frac{1}{c}\right)^2}+\sqrt{c^2+\frac{1}{a^2}}\)\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)

Ta cần chứng minh  \(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\frac{153}{4}\)

Thật vậy, áp dụng bất đẳng thức Cauchy và chú ý giả thiết \(a+b+c\le\frac{3}{2}\), ta được:\(\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\ge\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}\)\(=\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}\)\(\ge2\sqrt{\left(a+b+c\right)^2.\frac{81}{16\left(a+b+c\right)^2}}+\frac{1215}{16.\frac{9}{4}}=\frac{153}{4}\)

Bất đẳng thức đã được chứng minh

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2020 lúc 20:15

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

Bình luận (0)
Baek Hyun
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Phạm Thị Mai Anh
28 tháng 7 2020 lúc 20:23

Đặt ⎧⎪⎨⎪⎩a+b−c=xb+c−a=yc+a−b=z(x,y,z>0){a+b−c=xb+c−a=yc+a−b=z(x,y,z>0)

⇒⎧⎪ ⎪ ⎪⎨⎪ ⎪ ⎪⎩a=z+x2b=x+y2c=y+z2⇒{a=z+x2b=x+y2c=y+z2

⇒√a(1b+c−a−1√bc)=√2(z+x)2(1y−2√(x+y)(y+z))≥√x+√z2(1y−2√xy+√yz)=√x+√z2y−1√y⇒a(1b+c−a−1bc)=2(z+x)2(1y−2(x+y)(y+z))≥x+z2(1y−2xy+yz)=x+z2y−1y
Tương tự

⇒∑√a(1b+c−a−1√bc)≥∑√x+√z2y−∑1√y⇒∑a(1b+c−a−1bc)≥∑x+z2y−∑1y

⇒VT≥∑[x√x(y+z)]2xyz−∑√xy√xyz≥2√xyz(x+y+z)2xyz−x+y+z√xyz≐x+y+z√xyz−x+y+z√xyz=0⇒VT≥∑[xx(y+z)]2xyz−∑xyxyz≥2xyz(x+y+z)2xyz−x+y+zxyz≐x+y+zxyz−x+y+zxyz=0

(∑√xy≤x+y+z,x√x(y+z)≥2x√xyz)(∑xy≤x+y+z,xx(y+z)≥2xxyz)

dấu = ⇔x=y=z⇔a=b=c

Bình luận (0)
 Khách vãng lai đã xóa
๖²⁴ʱんuリ イú❄✎﹏
28 tháng 7 2020 lúc 20:26

Mai Anh ! cậu giỏi quá, cậu nè :33 

Bình luận (0)
 Khách vãng lai đã xóa
Chủ acc bị dính lời nguy...
28 tháng 7 2020 lúc 20:29

Ha~ Idol về mảng copy nay giỏi quá lè:33. Tác hại của việc copy paste là đây

Lần sai copy paste nhớ nhìn lại với chỉnh sửa đi nhá. Ko để này lộ liễu bôi bác lắm

Copy always mà vẫn 50k giải tuần đấy, ghê=))

Bình luận (0)
 Khách vãng lai đã xóa
Linh_Chi_chimte
Xem chi tiết
Girl
5 tháng 12 2018 lúc 5:12

\(\hept{\begin{cases}\frac{1}{\sqrt{2a+b+1}}+\frac{1}{\sqrt{2b+c+1}}+\frac{1}{\sqrt{2c+a+1}}=A\\\sqrt{2a+b+1}+\sqrt{2b+c+1}+\sqrt{2c+a+1}=B\end{cases}}\)(thật ra cx ko cần đặt,mk đặt làm cho gọn hơn thôi ^^)

Cauchy-Schwarz: \(A\ge\frac{9}{B}\)

Xét: \(B^2\le\left(1^2+1^2+1^2\right)\left(2a+b+1+2b+c+1+2c+a+1\right)=36\)

\(\Rightarrow B\le6\)

\(A\ge\frac{9}{B}\ge\frac{9}{6}=\frac{3}{2}\)

\("="\Leftrightarrow a=b=c=1\)

Bình luận (0)